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ABSTRACT

The use of techniques for feature selection allows one to treat classi-

fication problems in spaces of lower dimension. In this note we consider

a method of linear feature selection for n dimensional observation vectors

which belong to one of m populations. Where each population has a known

apriori probability and is described by a known multivariate normal density

function. Specifically we consider the problem of finding a k x n matrix

B of rank k (k < n) for which the transformed probability of misclassi-

fication is minimized.

Subject to the condition that the transformed a posterior probabilities

are distinct we obtain theoretical results which, for the case k = 1, give

rise to a numerically tractable formula for the derivative of the probability

of misclassification. It is shown that for the two population problem this

condition is also necessary. Finally, we investigate the dependence of the

minimum probability of error on the a priori probabilities and show that the

minimum probability of error satisfies a uniform Lipschitz condition with

respect to the a priori probabilities.
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On Differentiating the Probability of Error

in the Multipopulation Feature Selection Problem

1. Introduction

Let l',...," m be populations in Rn with apriori probabilities

'l,...," m and conditional densities Pi(x), i = ,...,m, defined for

x = (x,...,x E Rn by

P (x) = 1 /2 e(x
(2v)n/2 1/2

If B is a k x n matrix of rank k, then the transformed conditional

densities are defined for y = (Y'" 'k )T  Rk by

S- 1 T -1
P1 (y-B )y,B)(BE B (y-B )Pi(B) = (2)k/21BZ iB T1/2 e i i

Let g(B) denote the probability of misclassification in Rk  as a function

of B, with a Bayes optimal (maximum likelihood) classification rule.

If Bo minimizes g(B) and the Gateaux differential, [3, p. 171],

g(B o + sq - g(B o )6g(Bo;C) = lim - g
S s+ s

exists for a k x n matrix C, then 6g(Bo,C) = 0. Thus it is desirable

to obtain a formula for 6g(B;C). Such a formula has been obtained for the

case m = 2, a1 = a2 = 1/2, by Guseman and Walker [1], [2]. In this
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note we obtain a formula for the general case subject to the condition

that the functions aiPi(y,B) are all distinct. Unless otherwise stated,

this assumption will be made.

2. Differentiating the Probability of Error.

UBing a maximum likelihood classification rule, the probability of

error in R as a function of a feature selection matrix B of rank k

may be expressed as

g(B) = B)(y,B)dy + ... + f (y,B)dy
RI(B) R m(BT

where

fi(y,B) = l j P (y,B)

j #i

and

Ri(B) = {iy Rk lapi(Y,B) > p (y,B) for all j # i).

= {y E Rklfi(y,B) < f (y,B) for j # i).

Since the functions iPi (y,B) are distinct, the Ri(B) are dis-

joint open sets which cover Rk except for a set of measure zero; i.e.,

their boundaries.
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Let

r(y,B) = min f (y,B).
i

Then Ri(B) is the interior of the set

fy E Rk lfi(y,B) = r(y,B)}

and

g(B) = r (y , B)dy

Let C be a k x n matrix. If y e RI(B) and Isl is sufficiently

small, then

r(y,B + sC) = fi(y,B + sC)

Hence, for y E Ri(B),

lim r(y,B + sC) - r(y,B) = lim y,B + BC) - f y,B)
s-*o s s+o s

= Pfi (y,B;C)
=l 

zoi



Thus, provided that

(1) lim ( r(y,B + sC) - r(y,B) dy = lim r(y,B + sC) - r(y,B)dy
so R (B) s R (B)so dy

we have

m m
(2) 6g(B;C) >= f 6Pk(y,B;C)dy

i=1 Z=l R (B)

It is shown in [2], that

(3) 6pL(y,B;C) = pt(y,B){(y - Bl )T(BE BT) -1[C1 +

CE BT(BE BT)-1(y - B1 )] - tr[CZBT(BE BT)-}.

Combining (2) and (3) gives the required formula for 6g(B;C). For

k > 1 this formula is numerically intractable because of the integrals

which appear. For k = 1, however, it is possible to obtain an integral

free expression for 6g(B;C). Indeed, when k = 1, (3) becomes

(4) 6pk(y,B;C) = pt(y,B){ T 2 (y - BI ) 2

(B B kB )

C £ CC B
+ T(y - B P) -.
B B BZ B2. 2
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Integrating (4) by parts yields

f 6Pt (y,B;C)dy =- Pk(y,B)[_ BT(y - By ) + Cvi]

B) B Ri(B)

where I means the sum of the values of the function at the right
IRi(B)

endpoints of the intervals comprising R i(B) minus the sum of its values

at the left endpoints. Thus, for k = 1,

m mCE BT
(5) -6g(B;C) = aPj (y,B)[ - (y - By ) + CVI]

i=l =1 =1 BE.B Ri.(B)
joi J

The remainder of this section is devoted to showing that (1) is

true. To do this we require three lemmas. The first two of these are

generalizations of well known facts from calculus and integration theory.

If f is a real valued function defined in a neighborhood of a real number

x, let f(x) and f(x) denote respectively its upper and lower derivates

at x defined by, [4, p.96] ,

f(x) = lim sup f(y) - f(x)
yx\ y -x

f(x) = lim inf f(y) - f(x)
y*x y -x

Lemma 1: If f is continuous on an interval [a,b], then there exists

c E (a,b) such that
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ff(c) (b) - f(a)
-(c) - b - a

Lemma 2: Let (X,p) be a measure space. Suppose h(y, E is a real

valued function on X x [-6,6] such that for each s, h(y,s) is

absolutely integrable on X and for each y, h(y,s) is continuous in s.

Suppose also that there exists an absolutely integrable function (y) such

that

li(ys) l < 8y)

Ih s(y,s)< a(y)

ss

exists. Then

ds (y, s)dp = s (y,o)d.

s=o

Proof: Apply Lemma 1 and the Lebesgue dominated convergence theorem,

[4, p.229].

Lemma 3: If 6 > o is small enough that B + sC is rank k for Isl 5 6,

then there exists a function 0(y), integrable on R , such that

I6fj(y,B + sC;C)I 5 (y)
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for all y E Rk ,  Is < , j , ... , m.

Proof: By (3),

6f (y,B + sC;C) = 96py(y,B + sC;C)
£=1

= - ae pX(y,B + sC){[y - (B + sC)]T[(B + sC)P (B + sC)T -1

[CP + CE (B + sC)T(B + sC)Zk(B + sC)T) -1(y - (B + sC)Q)]

-tr[CLE(B + sC)T((B + sC)Q(B + sC) T)-}.

Since the means and covariances of the density functions P,(y,B + sC),

as well as the coefficients of the terms in { }, are continuous functions

of s, they form compact sets. From this fact, it is clear that the re-

quired function 8(y) exists. Since the actual construction of (y) is

tedious it will be omitted.

Now let h(y,s) = r(y,B + sC). We want to show that

d fh(y,s)dy = fh (y,o)dy.

Ri (B)R(B)

Let 6 > o be small enough that for Isl < 6, B + sC is rank k and

the functions ctjp (y,B + sC) are all distinct. Let B(y) be the function

in Lemma 3. Clearly, h(y,s) is integrable on Ri4B) for each fixed s
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and continuous on [-6,6] for each fixed y. Thus the result follows

from Lemma 2 once it is shown that

(6) h s (y,s) I !(y)

Ih (y,s)l I B(y)

for all y E Ri(B), Isl < 6. For y E Ri(B) and Isl < 6, there are

two possibilities:

Case 1, y E Rj(B + sC) for some j: Then h (y,s) = 6f.(y,B + sC;C) and

(6) follows from Lemma 3.

Case 2: y is not in any R (B + sC): Then h(y,s) = f (y,B + sC) for

more than one index J. Let J(y) be the set of indi'ces j such that

h(y,s) = f (y,B + sC). Then for sufficiently small Itl > o

h(y,s + t) = r(y,B + sC + tC) = f.(y,B + sC + tC)

for some j, depending on t, in J(y). Thus,

h(ys + t) - h(ys) fj(y,B + sC + tC) - f (y,B + sC)

t t

Since J(y) is a finite set, there are indices j and k in J(y) such

that

hs(y,s) = 6f (y,B + sC;C)

h (y,s) = 6 fk(Y,B + sC;C)
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and (6) follows again from Lemma 3.

This concludes the proof.

3. The Case of Non-Distinct Transformed Densities

In this section we show that the requirement that the aipi(y,B) be

distinct cannot be eliminated. Specifically, consider a two population problem

where 2 = 1/2, and pl(y,B) E p2 (y,B); that is, BI1 = B12  and

BE1BT = BE2BT. Let C be a k x n matrix such that Cu1 # C 2  or

CE1B CE2BT. We will show that 6g(B:C) does not exist. Indeed, using the

formula

minflf2 [fl + f2 - Ifl - f2 1

we see that

g(B + sC) = . in{pl(Y,B+sC), p 2 (y,B+sC)}dy

R

R

g(B) =

Hence, for s > 0,

g(B+sC) - g(B) 1 R-ar - (y,B-nC)
s T .1k  s 1(l2'' .. . - P2 y) ..

R

p 1(y,B+sC) - pl(y,B) - 2 (yB+C) p2 (y,B)

k s s
R
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which tends to - f6pl(y,B;) - p2 (y,B;C)Idy as s + 0. On the other

hand, for s < 0,

g(B+sC) - g(B) P1 ( y B+sC) - l ( y B ) - P2 ( y B+ s C ) - P2 ( y , B )

s 4 s [ s sy

which tends to

i f 6pl(y,B;C) - 6p2(y,B;C)dy.

Hence 6g(B;C) exists if and only if

I6p(,B;C) - 6p 2 (y,B;C)Idy = 0.

R-

That is, if and only if 6pI(y,B;C) = 6p2(y,B;C) almost everywhere. But

6pl(y,B;C) = pl(y,B){(y-Bpi)T (BE1B T)-1[11

+ CEB T T)-1(y-B 1 )] - tr[CE1BT(BElBT -1 -

6 p 2 (y,B;C) = pl(y,B){(y-BI 1 ) T (B 1 BT ) - [C12

+ CE2 B (B 1 BT) - (y-B 1 ) ] - tr[C 2 BT (BE 1 BT) .

Since the polynomial parts of these two expressions have different coefficients,

they cannot be equal almost everywhere. Hence, 6g(B;C) does not exist.

Notice that the problem of non differentiability does not arise if the

apriori probabilities are distinct, since the functions a: p (y,B) are



distinct in this case. This suggests that if some of the apriori probabilities

are equal then one might attempt to find a B which nearly minimizes g(B)

by changing the apriori probabilities slightly and insuring that the new

apriori probabilities are distinct. The following theorem shows that this

approach is valid. Let a = ()i "' m denote the vector of apriori prob-

abilities and write g(B,a) to show the dependence of the probability of error

on a as well as on the feature selection matrix B. Let fi(y,B) be defined

as in Section 2, and let

m
f(y,B) = ilap.i(y,B).

Then g(B,a) = min fi(y,B)dy
Rk i

= min(f(y,B) - api(y,B))dy

R

= [f(y,B) - max ]p(y,B)Idy

R

= 1 - max aiPi(y,B)dy.

R

Theorem: For all a and 8,

Imin g(B,a) - min g(B,8) l <

B B

where i l ll-11 + ... + la - m .

Proof: In view of the formula for g(B,a) given above, it clearly suffices

to show that if ql (y), ... , qm(y) are probability density functions on Rk
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and a, are Mn-tuples of real numbers, then

(7) 1 I1 m q(y) - 1m Biqi ( y) dy II (j

This inequality is clear for m = i. For m > 1 write

max qi(y) = qm(y) + max aqiq(y)
i:am 2 m i5m-l i

+ lamqm(y) - imax aiq(y)I}

On substituting this and the corresponding expansion for max 8qi(y) into
im

the left hand side of (7) it follows easily that

Imax aiqi(y) - max Biqi(y) dy
im im

Slml5 m m m(y)dy

+ lmax "iqi() - im-lmax i i(y) dy

k i lm- l i lm-l 1 yIdy

Sam-Sm + im q(y) - max q (y)(dy.

Thus the result follows by induction.

4. Concluding Remarks

It will be shown in a subsequent report that the condition that the

aipi(y,Bo) be distinct is necessary as well as sufficient for the differentiability

of g(B) at B . Thus the following conjecture is of importance whether it
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is intended to solve the variational equation directly for the minimizing

B or to use a steepest discent method and use the expression for 6g(B;C)

developed in Section 2 to compute the gradient at each step.

Conjecture: If p i(x) U ci (x) for i,j = 1,...,m and Bo minimizes

g(B), then the functions aiPi(Y,B ) are distinct.
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